■ <u>Tips & Solution Seminar</u>:

SerDes/DDR Memory Tips & Solutions

"Gen5,6급 SerDes 와 Memory Ch. 검증 및 최적화 시뮬레이션, 측정 기법"

정성일, sijeung@huwin.co.kr , 010-3381-1417

2022. 6. 24

Contents :

5 Generation

ANSYS Electronics 이용한 3D EM 모델링 / 분석

Huwin ACVS 이용한 Channel 검증

<u>5</u> G	iener	atio	n : ~	50G	iHz	->	Expect	ed to i PCI DD	mplemen e Gen6, L R5, GDDF	nt equalization JSB4, 100G per-lane Ethernet and OIF/CEI R6, C-PHY	imX	DQ0 DQ1 DQ2 DQ3 DQ5_t
							New s	imulation	on techni tistical an AMI car	iques required alysis to predict behavior over millions of bits a be used to model the equalization		DQS_c DQ4 DQ5 DQ6 DQ7
	260 240		7	I/O BA E ^v	NDWID1 VERY 3 Y	TH DOU EARS	BLES	➢ Tim 256 (x16), (PGe 5.0)		voltage margins are specified at an extremely lov	w BER	(1E-16)
	220 200 (\$/85) (\$/85) 140 140 120 100		16Lan (32GT	e Tx/R: /s)	x : X32 p	air	128 (x1 (PCIe4 64 (x16)	(6) 12	8	64Gbps (16ps UI), S-para.로 정확한 BER ?		HawkEye
	60 40 0.13 0.13 1992	.53 (P0.2.0) 0.26 1995	1.06 2.13 (PCX) (PCX22 0.5 1 1998 2001	8 (x16) (PCe 1.0) 2 2004 Actual Bandwidth	16 (x16) (PCIe 20) 4 2007 2 Time (GB/S) UO Ban	2 (x16) C(x16) 8 16 010 2013 dwidth Doubles Every	32 2016 (Three Years	2019 2022 P	2025 CI ()SIG	Non-root complex (NRC) chip - - GPU/SSD/NIC, etc.	NRC pack	Add-in Card (AIC) AC Coupling Capacitor
	날기	짜		데이터			대역폭				/1T	
버전	발표	적용	인코딩	전송률	1레인 (×1)	2레인 (×2)	4레인 (×4)	8레인 (×8)	16레인 (×16)	Root complex (RC) chip (simulation reference plane)		Golden fingers
1.0~1.1	2003년	2004년	8b/10b	2.5 GT/s	250 MB/s	500 MB/s	1 GB/s	2 GB/s	4 GB/s	/		CEM connector
2.0~2.1	2007년 1월	2007년 8월	8b/10b	5 GT/s	500 MB/s	1 GB/s	2 GB/s	4 GB/s	8 GB/s			1
3.0~3.1	2010년 11월	2012년 1월	128b/130b	8 GT/s	984.6 MB/s	1.97 GB/s	3.94 GB/s	7.88 GB/s	15.75 GB/s			-
4.0	20 <u>17</u> 년 6월	2018년	128b/130b	16 GT/s	1.969 GB/s	3.94 GB/s	7.88 GB/s	15.75 GB/s	31.51 GB/s	Baseboard AC Coupling	Connector/	Baseboard interface
5.0	2019년 5월	2020년	128b/130b	32 GT/s	3.938 GB/s	7.88 GB/s	15.75 GB/s	31.51 GB/s	63 GB/s	Capacitor	(simulation	reference plane)
6.0	2021년 예정	미성	128b/130b	64 GT/s	8 GB/s	16 GB/s	32 GB/s	64 GB/s	128 GB/s	PCIE GEN5 Channel Topology		

* 그림출처 : Y. L. (Nvidia), Y. H. (Amphenol), "PCIe Gen. 5 CEM Connector and Add-In Card PCB Design Optimizations", DesignCon 2019

SerDes/DDR M	lemory Tips &				Circuit		
3D EM Modeling :				Multizone PCB	Links	Driven Assembly	
Ansys HFSS HPC: Two+ I	Decades of Innovations						
 1990 HFSS v1.0 Automatic adaptive meshing Gold standard accuracy and reliability 1999 HFSS v7 Matrix multi-processing 2005 HFSS v10 Spectral Decomposition Method (SDM), for parallel frequency points Distributed Solve Option (DSO), for parallel design points 2007 HFSS v11 Iterative matrix solver 2008 HFSS v12: Domain Decomposition (DDM) Mixed Order Elements 2010 HFSS v12.1 HFSS-IE solver (3D MoM) with fast ACA solver DDM with Mixed Order Elements 	 2012 HFSS v14 Finite Antenna Array DDM Hybrid FEM-MoM solver HFSS-IE Physical Optics (PO) asymptotic solver 2013 HFSS 15.0 Improved matrix multiprocessing, up to 2X faster matrix solves Improved parallel frequency sweeps with MPI interconnect 2014 HFSS R15.0.3 Distributed Matrix solver Hierarchical HPC, Parameter w DDM Geometry-aware Phi mesh, fast meshing for layered media GPU support for HFSS transient 2015 HFSS R16 Rescale & Mimbix Cloud deployment HFSS Time Domain Solver, FETD Auto-HPC setup HFSS-IE MLFMM Fast Solver 	 2017 HFSS R18 Broadband adaptive meshing S-parameter only solve, 90% fast. Multi-level HPC, Parameters-Free 2018 HFSS R19 Improved GPU for FD, up to 50% impromatrix acceleration HFSS SBR+ GPU support, up to 5x speet antenna placement studies 2019 HFSS 2019R2 Microsoft Azure Cloud Deployment Fast HFSS Solve auto-setup option 2019 HFSS 2019R3 Multi-cell 3D Component Array DDM 2020 HFSS 2020R1 Improved distributed frequency sweep Improved distributed frequency sweep Improved distribution for HFSS Regions 	MCAD Hierarchy Encrypted 3D Components	3D Components Mesh Fusion	IC Meshing Q3D-DCR ECAD + MCAD	System EDB Automation	
 2011 HFSS v13 Finite Element – Boundary Integral (FEBI) Multi-core TAU Mesher, field recovery, and fields post-processing HFSS Time Domain Solver, DGTD 	2016 HFSS R17 Introduction of Savant SBR+ Sc GPU for frequency domain sol Direct	5 3D Components	in Layout	n and Distances America Sciences (2) NA ■ ■ A A B (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)			
	• Dara	matric cupport	Of JBC complex complex. Assembled Orant Comments on Comments Developments Developments Developments			UISSHA, RF_Jack, whot 	

- Parametric support
- Parameterizable
- 3D mesh operation support
- Scripting support
- UI improvements
 - Tree view
 - Menu integration
 - Definition manager
- Note: encrypted component support available in 2021R1

측정 & Characterization :

측정 & Characterization :

- ◆ 측정과 해석 결과 차이
 ▶ PCB 원자재의 물성과 실제 제작된 PCB의 유전율의 차이가 존재함
 - ✓ 그 차이가 크지 않지만 TDR 결과 비교시 약간의 delay 차이가 나타남
 - ✓ 접합 PCB의 경우 손실 값의 보상이 필요함
 - ▶ 제작된 PCB 형상이 해석과 차이가 존재함
 - ✓ PCB 형상의 에칭 및 표면 거칠기 형상을 trace 부분별로 정확히 반영하기는 어렵고 평균 적인 수치를 적용하여 해석 필요(적용 가능하나 효율성이 매우 떨어지고 평균값을 적용 해도 오차가 크지 않음)
 - ✓ PCB trace 밀도 또는 곡률 등의 형상에 따라 제조상의 오차가 발생함

Promising results on main challenge: structuring 30/30µm

Results on mass production equipment at AT&S

· Concepts from lab have been successfully transferred to fab

AT&S

PCB Materials & Technology :

								Frequency	
						5 GHz	< 20 GHz	< 30 GHz	30GHz - 80 GHz
					Copper				
					Treatment				
	Supplier	Туре	Dk @ 10Ghz	Df @ 10 GHz	Rz	FR 4	Advanced FR4	Low Dk Material	Very Low Dk material
	Panasonic	R1755M, R1650	4,5	0,015	5-7µm				
	Panasonic	Megtron 2, 4	4	0,015	5-7µm				
als	Panasonic	Megtron 6	3,5	0,004	2μm				
eri	Rogers	RO43XX	3,6	0,0037	7-9 μm				
ati	Rogers	RO 3003	3	0,0013	5-10µm				
Σ	Panasonic	LCP	3	0,001	2μm				
	Du Pont	Pyralux TK	2,5	0,002	4μm				
	Isola	Astra 3.0 Dk	3	0,0017	2µm				
	Stack up Connection	PTH's Laser Vias Filled Vias Deep Drilling Homogeneous Hybrid Asymmetric Hybrid				년 년 년 not required	 ☑ ☑ ☑ ☑ ☑ not required not required 	☑ ☑ ☑ ☑ ☑ not required	
Technology	Structuring Process Line / Space Tolerance	Panel Plating Semi Pattern				75μm + / - 20% 90μm + / - 10 % 30μm	75μm + / - 20% 90μm + / - 10 % 30μm	75μm +/-20% 90μm +/-10% 30μm	75μm + / - 20% 90μm + / - 10 % 30μm
		Semi Additiv				+/-7μm	+/-7μm	+/-7μm	+/-7μm

PCB 측정과 해석 정합성 : PCB 물성 분석

- ✤ HFSS 해석에서 사용하는 PCB relative permittivity는 time delay, dielectric loss tangent는 insertion loss를 이용하여 구할 수 있음
- ✤ PCB 측정과 해석 결과를 비교하여 유전율과 손실값을 보상함

■ <u>PCB 측정과 해석 정합성 : De-embedding 필요성 및 원리</u>

- ◆ DUT를 측정장비와 연결하기 위해 존재하는 PCB 등의 fixture가 필요함
- ◆ DUT가 너무 작은 경우에 측정 probe사이에 coupling이 발생하기 때문에 이격이 필요함
- ◆ Fixture + DUT + fixture 구조에서 양쪽 fixture 특성을 제거하여 DUT 특성을 구함
- ◆ Fixture 두개를 연결한 2X thru를 측정하여 Fixture의 역함수를 구함

PCB 측정과 해석 정합성 : 측정 및 성능 분석 사례

✤ 2X thru 측정 결과

2xThru fixture de-embedding 전후 IL/RL

2xThru fixture de-embedding 전후 TDR 결과

■ <u>PCB 측정과 해석 정합성 : 측정 및 성능 분석 사례</u>

◆ DUT 측정 결과

Fixture+DUT de-embedding 전후 IL/RL

Fixture+DUT de-embedding 전후 TDR

ANSYS Electronics 3D EM Modeling

Memory/SerDes 채널 분석/모델링

■ <u>3D 해석 필요성</u>

- ✤ 최근 고속 신호 전송 채널은 그 크기가 점점 작아지고 있기 때문에 직접 측정이 불가능하고 제조 후 수정이 불가능하여 해석을 이용한 설계의 필요성이 높아짐
- ✤ 작아지고 복잡해진 채널은 via, socket, connector 등의 다양한 불연속 인터페이스의 임피던스 매칭과 상호 간섭의 영향을 고려하여 설계되어야 함
- ✤ 기존의 각 채널 구성의 S-parameter의 연결로 전체 채널 분석이 불가능하고 3D 해석을 통한 상호 영 향성 분석도 필요함
- ✤ 모든 채널을 3D 해석을 이용하여 분석하는 것이 가장 정확하지만, 시간 절약을 위해 3D 해석이 필요 한 부분을 판단하여 적절히 활용하는 방안이 필요함
- ◆ 일반적인 PCB trace는 Slwave가 효과적이고 Package와 같은 PCB의 top에서 bottom으로 연결되는 구 조는 HFSS 3D layout, connector 등의 3D 개체를 포함한 부분은 HFSS를 활용하는 것이 효과적인 해 석 방법

Stack up 및 via 속성 확인

- ◆ Stack up은 PCB 사양 중 가장 중요한 항목으로 확인 필수
 ➢ HFSS 3D 해석에 필요 없는 layer는 제거하는 방법도 있음
- ◆ Via 정보는 via 선택 후 Edit Padstacks 클릭하여 확인
 ➢ layout data에 정확히 입력되지 않은 경우가 있기 때문에 확인 필수)

Layer Stackup Wizard

■ Slwave와 HFSS 3D layout 연동 해석 : Slwave region 설정

- ✤ Slwave는 지정된 region 구간을 HFSS 3D layout로 해석하는 기능을 제공 ▶ 3D 해석할 구간을 region으로 설정
- ✤ Region 설정 시 주의 사항
 - ▶ Region은 Slwave port를 포함한 구간만 설정 가능
 - ▶ 구한 경계면은 HFSS 3D layout port 설정이 가능하도록 경계면에 수직한 reference plane을 포함해야 함
- ✤ Region 설정된 구간은 Slwave 결과 폴더의 HF#로 저장됨

3D 해석 구간

■ <u>HFSS 3D layout를 이용한 PCB 해석</u>

- ◆ PCB와 같은 적층 구조 해석은 layer마다 2D triangular mesh를 생성하는 phi meshing 기술이 유용함
- ✤ 해석은 HFSS solver을 사용하기 때문에 HFSS와 거의 같은 결과를 나타냄
- ✤ Package 와 같이 top에서 bottom으로 연결되는 형태의 해석은 Slwave region 사용이 불가능하기 때 문에 3D layout를 추천
- ✤ BGA와 die의 solder ball 모델을 지원하고 port 설정도 분석 net만 선택하면 자동으로 생성이 가능하 기 때문에 모델링 시간도 절약됨

RGA

operties	(*	
Name	value	Unit	Evaluated V	
туре	Component			
LOCKPO				DIFF1_1U1_12
Name				
Color U				
Lolor				
Part	CUN16A_BGA16-1_0-2			
Part Type	IC .			
Model Into				8
rins De el le e	Euit		TOONIICA D	
маскад	CUNIDALDUAID-ILU-2,	malar	CONTRALB	
mountin	0	meter	unieter	
⊡ r-iacen Dissorro	TOP			
Placem	108		0.0	
Elissed	0,0		0,0	
nipped As als	0		04	
migie m Dee dee	0	neg	onea	Message Manager
	1014			8
C nender			4	18

■ <u>HFSS를 이용한 PCB 해석 방법 : HFSS region 해석</u>

◆ Slwave 해석의 solution name과 동일한 이름의 폴더에 저장됨
◆ 각 region이 따로 저장되고 region(숫자)는 HFR(숫자) 폴더에 저장됨
◆ Slwave 파일명 + "_wo_regions" 의 이름으로 나머지 부분이 저장됨

220526 > HUWIN_FIXTURE_220510e_xml > HUWIN_FIXTURE_220510e2.siwaveresults > 0000_SYZ_Sweep_3D > HFR0

이름	수정한 날짜	유형	크기
HFR0.aedb	2022-05-26 오전 12:25	파일 폴더	
HFR0.aedb.batchinfo	2022-05-26 오전 12:24	파일 폴더	
HFR0.aedtresults	2022-05-26 오전 12:25	파일 폴더	
batchExtract.py	2022-05-26 오전 12:24	PY 파일	1KB
🗋 clipdesign.config	2022-05-26 오전 12:24	CONFIG 파일	2KB
HFR0.aedb.q.completed	2022-05-26 오전 12:24	COMPLETED 파일	1KB
🔥 HFR0.aedt	2022-05-26 오전 12:25	Ansys Electronics	55KB
□			

■ HFSS를 이용한 PCB 해석 방법 : HFSS 3D layout

- ◆ 커넥터 또는 IC 모델이 없이 PCB만 해석하는 경우 HFSS 3D layout 활용 방안
 ➢ Export > HFSS 3D Layout 클릭
 ➢ PCB 전체 선택 후 아래 그림과 같이 옵션 및 파일 위치 지정 후 OK 클릭
 ➢ 기본 Project name이 HFSS로 export와 동일하게 지정되므로 파일명 변경 필요
 - ▶ 설정된 Region이 없는 경우에 export 가능

port Home View Tools Advanced Export	Simulation Re	esults 🛛 🖓 Tell me what you want to	Export HFSS 3D Layout Project	_		×
Component File 🔄 Layer Stackup XML	Settings File		Project name: train20220526 WHUWIN_FIXTURE_2205	10e_xml₩HUWIN_FIXTURE_220510e2.aedt	Brows	æ
HFSS 3D Layout 🛐 Layer Stackup 🛐 RLC Part Values Ansys EDA Layouts	📑 Template File	3D Export Preview Export Export t Options (Clipped Pwr/Gnd) HFSS 3D 3	Automatic (recommended)	Manual (legacy)		
			Invoke Ansys Electronics Desktop upon completion	Export Plane Extents as HFSS Regions		
			Convert to Coax Port When Possible	Preserve Circuit Port Classification		
			Create Ports for Pwr/Gnd	Radial Extent Factor: 0		
			GND			
				ОК	Cano	cel

■ HFSS를 이용한 PCB 해석 방법 : HFSS 3D layout

- ◆ BGA 선택 후 속성창의 Model info 클릭
- ✤ Component Model 창에서 BGA 모델 설정 후 OK 클릭
- ◆ 같은 방법으로 connector 모델도 동일하게 설정

		Component	Model X							
	BGA	Component Info-						Component M	Model	>
		Part Name:	CON16A_BGA16-1_0-2_0X8					- Component Info-		
		Part Type:	IC					Part Name:	CON7 CON7-0 6	5-1 <u>9×4</u> 8
		Ref Des:	U1					Part Tune:		
		No. Pins:	16					Ref Des:		
		Model Interface						No Pine:	7	
		Interface:	Manual 💌						<u>]</u> r	
								Model Interface		
		Type:	Flip chip 🗨	Properties			Д	Interface:	Manual	•
Properties #		Orientation:	Chip down 💌	Name	Value	Unit	Evaluated \	Solder Ball Propert	ies	
Name Value Unit Evaluated V		Height:	0	LockPosition	Component			Shape:	Cylinder	•
LockPo		Solder Ball Proper	ties	Name Color Override	J1			Diameter:	0.21mm	
Color O	90	Shape:	Cylinder	Color				Mid Diameter:	0.21mm	
Color Collisa BGA15-1 0-2		Diameter:	0.3mm	Part Part Type	CON7_CON7-0_6-1_9X,			Height:	0.21mm	
Part Type IC		Mid Diameter:	0.3mm	Model Info		1		Material:	solder	
Model Info		Height:	0.5mm	Package Def	"CON7_CON7-0_6-1_9X,,		"CON7_COI	Ded Deservise		
Packag "CON16A_BGA16-1_0-2 "CON16A_B		Material:	solder	Mounting Offset	t O	meter	Orneter	Port Properties	0	
Mountin U meter Umeter		Port Properties		PlacementLa	TOP			Thereferice onset.	1 °	
Placem TOP		Reference Offset:	0	Location	0,0		0,0	Reference Size:	🗹 Auto	
Location 0,0 0,0		Deference Cier	The Auto	Flipped		dog	Odea		X: 0	
Flipped		Hererence Size:	I♥ Auto	Angle	U	aeg	uaeg		Y: 0	
Angle 0 deg Odeg	Message Manager		X: 0	Scaling	1		1			
Crelier 1			Y: 0							1
Scaling I			,	1					<u>ок</u>	Cancel
1			OK Cancel							

■ HFSS를 이용한 PCB 해석 방법 : HFSS 3D layout

◆ BGA 모델 선택 후 우클릭 > Port > Create Ports on Component 클릭하여 port 생성 ◆ 커넥터도 같은 방법으로 port 생성 ◆ HFSS setup 선택 후 해석 진행

■ HFSS를 이용한 커넥터를 포함한 PCB 해석 방법 : HFSS 3D layout에서 PCB export

✤ HFSS 3D layout의 solution 우클릭 > Export > HFSS Model 클릭하여 export

■ <u>Slwave to HFSS : HFSS를 이용한 PCB 해석</u>

- ◆ Slwave는 PCB 데이터를 import하여 직접 해석하거나 주요 인자를 편집하여 HFSS로 export 가능함
- ✤ stack-up 편집
 - ▶ PCB 데이터의 stack-up 수정이 가능하며, 모델링 작업 전 확인
- ✤ Slwave export 옵션 설정
 - ▶ 100% via fill: Pad stack editor의 Via Plating 무시
 - ▶ Separate dielectric layers: 유전체 종류별로 분리
 - ▶ Ignore unconnected pads: trace가 연결되지 않은 pad 무시

Export Options	×					
Solid Model General						
Generate fully unified nets	Set Ansys Mechanical Defaults					
Z Excluding Solderballs/Solderbumps/Bond	dwires					
Split solid via						
🗹 100% via fill (overrides per-padstack plating ra	atio)					
Ignore dielectrics						
Separate dielectric layers						
Unite consecutive layers that have same	e material					
Cut dielectrics based on plane extents						
Subtract metals from substrate						
Only when boundaries intersect						
Ignore unconnected pads						
Remove plating tails						
Clip all metal at plane extent boundaries						
Discretized arcs in planes and traces						
Square off trace ends						
Create 2D sheet bodies representing zero-thick	kness metal					
Automatically ignore cutouts through which no	no via passes					
Preserve all antipads						
Ignore cutouts with area less than	0.2085875 sq mm					
Ignore geometries with area less than	0.208588 sq mm					
Minimum Trace Edge Length	1um					
Minimum Plane Edge Length	1um					
Minimum Pad Edge Length	1um					
Minimum Dielectric Edge Length	10um					
Dielectric Expansion Factor	0.1					
Save Options As Default						
	환인 취소 도운막					

■ HFSS 해석 사례 : 공간 부족으로 인한 임피던스 불연속

- ✤ BGA 또는 socket과 같이 trace 폭의 확보가 불가능한 경우 임피던스 불연속이 발생함
- ✤ 채널특성에 대한 영향 분석이 필요하고 개선을 위해서는 stack-up 변경 등이 필요함
- ✤ 정확한 분석을 위해 꼭 3D 해석이 필요함

■ HFSS를 이용한 PCB 해석 방법 : HFSS 3D layout

◆ 해석 완료 후 Excitations 우클릭하여 Differential Pairs 클릭하여 설정
◆ Report 창에서 해석한 Solution 선택 후 해석 결과 확인

Con

Positive	Negative	Enabled	Matched	Diff, Na	Ref, Z (oh	Comr
J1,2,DIFF0_P	J1,3,DIFF0_N	~		Diff0_J1	85,00	Comn
J1,5,DIFF1_P	J1,6,DIFF1_N	~		Diff1_J1	85,00	Comn
U1, 10, DIFF1_P	U1, 12, DIFF1_N	~		Diff1_U1	85,00	Comn
U1,4,DIFF0_P	U1,6,DIFF0_N	~		Diff0_U1	85,00	Comn

■ HFSS를 이용한 커넥터를 포함한 PCB 해석 방법 : Connector import & 물성 입력

◆ 커넥터 부분 포트 및 PEC ground 삭제 ◆ Menu bar의 Modeler > import 클릭 후 커넥터 모델 선택하여 열기 ✤ 일반적인 커넥터 기구 파일은 import 후 전기적 특성 설정 필요

■ HFSS를 이용한 커넥터를 포함한 PCB 해석 방법 : PCB에 커넥터 실장

♦ PCB 상의 커넥터 실장 지점에 상대 좌표 추가
 ♦ 커넥터를 복사하여 PCB 파일에 붙여넣기 할때 커넥터 파일의 global 좌표는 PCB 파일의 상대 좌표로 붙여넣기 됨

커넥터 파일의 global 좌표

■ HFSS를 이용한 커넥터를 포함한 PCB 해석 방법 : 커넥터 port 설정

◆ 커넥터 해석 시 mate 상태로 해석해야 정확한 결과를 얻을 수 있음
◆ B2B 커넥터의 경우 상대 PCB 추가 필요

MLCC PAM4 application design guide : PAM-4 Signaling

Figure 2. Power Spectrum Density of NRZ and PAM4

PAM4 $f_{Nvauist} = 56/4 = 14$ GHz (Figure 1 on page 5)

NRZ $f_{Nvguist} = 56/2 = 28$ GHz (Figure 2 on page 5)

CEI-56G : 56Gbps PAM4 -> $f_{Nyquist}$ = 14GHz => BW : 5*14GHz=70GHz

AMOTECH Broadband Capacitor

MLCC PAM4 application design guide : 70GHz AC coupling

HFSS 3D Components

ABCUC 04F 0XX 104K NDG

Simulation Result & Measurement [10MHz-67GHz (10MHz step)]

Transmission Line only results

60 Snp^y

Transmission Line + MLCC results

Eye Diagram

■ <u>Series Capacitor TDR 분석 개요</u>

0402M MLCC (260nF , ESR: 40mΩ, ESL:0.3nH) 에 대한 TDR Test :

MLCC 3D EM model 이용한 분석

Series Capacitor 등가 회로의 TDR curve 특성

■ MLCC 3D EM model 이용한 분석

IL, RL of Differential line with MLCC 3D EM model :

10MHz 이상 주파수부터 측정 또는 시뮬레이션 하는 경우 낮은 주파수에서의 결과가 정확 하게 extrapolation 되지 않을 수 있음.

=> Capacitor 용량이 200nF 이상으로 큰 경우 1kHz 이하부터 측정 또는 시뮬레이션 권장.

■ <u>Series Capacitor 3D EM 모델의 TDR curve 특성</u>

* Ref. TDR 결과 : www.snpview.com

Transient Simulation: 분석 시 체크 사항 - 대역 조건

- S-parameter의 다양한 특성이 Eye-diagram 정확도에 영향을 미침
- > S-parameter의 대역 조건, Causality, Passivity 특성을 사전에 파악하고 개선 필요

Eye-diagram 결과 차이

Transient Simulation: 분석시체크사항 - DC 추정

- 저주파 데이터를 갖지 않는 S-parameter에 대한 DC 추정
- > S-parameter가 저주파 대역을 갖지 않는 경우 Transient 결과의 Steady state 정확도 감소
- Designer Nexxim solver의 DC 추정 option 제공

부정확한 DC추정으로 인한 결과 오류

Transient Simulation: 분석 시 체크 사항 - Causality

- 시간 응답이 delay time 이전에 값을 갖지 않는 특성 (h(t_d)=0, t_d<0)
- ▶ Vector fitting 기법 적용으로 대역 제한된 S-parameter에 대한 Causality 문제 해결
- > EM solver의 정확도 문제로 인한 S-parameter 자체의 Causality 문제는 Enforcing으로 해결

S-parameter 자체의 Causality 문제는 Causality check를 통해 확인 가능 (Enforcing option 제공)

Transient Simulation: 분석시체크사항 - Passivity

- 수동 소자의 S-parameter는 에너지 이득이 없는 특성
- > 에너지 보존 법칙 (고립계에서 에너지의 총합은 일정)이 수동 소자의 S-parameter에도 적용됨
- Passivity 확인 및 Enforcing 기능 제공

Huwin ACVS

(Automated Channel Verification System)

Memory/SerDes 채널 자동 검증

Transient simulation : Basic principle

- Hybrid time-frequency domain method
- > Split Freq./Time domain analysis → Higher efficiency, more flexible
- Eye-diagram, BER, TDR, TDT

Transient simulation : Simulation setup

- Data rate = 1/UI (unit interval)
- PRBS : Pseudo random bit sequence -> LFSR: Register length, Seed
- Time step : Sampling interval of output waveform

PRBS => Linear feedback shift register (LFSR) Check Register length, Seed (이미지 출처: 위키피디아)

Channel Loss Check

Transient simulation : Eye-diagram, BER, Bathtub

- Eye-diagram: UI 단위로 출력 파형 겹쳐 그림
- BER (Bit error ratio) : 출력 파형의 오류 확률 표현
- Bathtub : BER 결과를 도식화 -> BER의 CDF (Cumulative distribution function) 차트

Eye-diagram, BER (Bathtub)

Eye diagram, jitter histogram, BER bathtub curve의 관계도 (이미지 출처: 김진국, 고속 신호전송 시 Bit Error Rate(BER)의 확률적 예측기술)

AMI Simulation: Differential signaling (SerDes): Basic principle

- Hybrid type analysis: Non-LTI (Transient sim.) + LTI (AMI model)
- ▶ Tx/Rx driver + Channel 의 Impulse response 추출
- > AMI model에 Impulse response를 입력하여 분석 결과 도출
 - : Impulse response의 정확도가 분석 결과에 가장 큰 영향을 미침

AMI Simulation: Differential signaling (SerDes): Tx/Rx equalizers

- Static EQ: 입력 파형의 특성과 상관없이 동일한 특성으로 equalization
- > FFE (Feed-forward equalization), CTLE (Continuous time linear equalization)
- Dynamic EQ: 입력 파형의 특성이 equalization 결과에 영향
- > DFE (Decision feedback equalizer)

FFE 기본구조

(이미지 출처: X. Li, Wireless Visible Light Communications Employing Feed-Forward Pre-Equalization and PAM-4 Modulation) CTLE 기본구조

(이미지 출처: Jeffry. W, Understanding the math of CTLE definition in IEEE 802.3 which used by 50G PAM4 (200GAUI-4/400GAUI-8)) DFE 기본구조

AMI Simulation: Differential signaling (SerDes): AMI parameters

- Reserved_parameters: AMI 표준 공통 설정값
- ▶ Init_Return_Impulse, GetWave_Exists, Ignore_Bits, Jitter등
- Model_Specific: 해당 모델에만 해당되는 설정값
- ➤ Equalizer 설정

(Reserved Parameters (Reserved Parameters (Ignore Bits (Usage Info) (Type Integer) (Default 0) Info) (Type String) (Value "6.1") (AMI Version (Usage (Description "The first IBIS version that supports this AMI file. Results may not be valid in earlier (Description "Ignore four bits to fill up tapped delay line.")) (Max Init Aggressors (Usage Info) (Type Integer) (Default 0) (Init_Returns_Impulse (Usage Info) (Type Boolean) (Value True) (Description "Number of aggressors is actually unlimited.")) (Description "When True, this model supports AMI Init (statistical) simulation.") (Init Returns Impulse (Usage Info) (Type Boolean) (Default True) (Description "Both impulse and parameters out returned.")) (GetWave_Exists (Usage Info) (Type Boolean) (Value True) (Description "When True, this model supports AMI GetWave (time domain) simulation.") (GetWave Exists (Usage Info) (Type Boolean) (Default True) (Description "GetWave is well and truly provided in the module.")) (Max Init Aggressors (Usage Info) (Type Integer) (Value 50) (Use Init Output (Usage Info) (Type Boolean) (Default False) (Description "The number of crosstalk aggressors supported by this model.") (Description "GetWave and Init function independent of each other.")) (Modulation (Usage In) (Type String) (Value "NRZ") (Description "Specifies whether the model will operate as NRZ or PAM4.") (Model Specific (DFE vth (Usage In) (Type Float) (Format Range 0 0.332 1.13) (Default 0.731) (Tx Dj (Usage Info) (Type UI) (Value 0.075) (Description "the middle of Vswing at RX pad")) (Description "Tx Bounded Jitter in UI") (DFE coeffs (Description "DFE 1-tap coeff in Volt") (Tx Rj (Usage Info) (Type UI) (Value 0.0057) (Description "Tx Random Jitter in UI") (1 (Usage In) (Type Tap) (Format Range 0 0.000 1.260) (Default 0.630) (Description "1st tap coeff in Volt")) (2 (Usage In) (Type Tap) (Format Range 0 0.000 0.630) (Default 0.315) (Description "2nd tap coeff in Volt. Set to 0 for 1-tap DFE"))

(3 (Usage In) (Type Tap) (Format Range 0.000 0.000 0.001) (Default 0.000) (Description "Reserved for Synopsys internal usage")) (4 (Usage In) (Type Tap) (Format Range 0.000 0.000 0.001) (Default 0.000) (Description "Reserved for Synopsys internal usage"))

Tx, Rx ignore bits를 Simulation 설정에 반영 -> Bit length, offset time

) | end DFE_coeffs) | end Model Specific

AMI Simulation: Single-ended (DDR5): Basic principle

- Transient simulation -> Rising/falling response 추출
- SerDes AMI: Single edge response 이용하여 해석 (Rising/falling 특성 동일)
- ▶ DDR5는 Single ended로 Rising/Falling 2가지 종류의 response 이용 필요

AMI Simulation: Single-ended (DDR5): Basic principle

- X-talk response 추출
- > 모든 Net의 X-talk 성분에 대한 Response 추출: Transient simulation 자동화 적용
- ➢ 각 Net별 X-talk이 포함된 Waveform 합성

AMI Simulation: Single-ended (DDR5): DC offest

- SerDes AMI: Differential signaling으로 DC offset이 없음 (0V 기준 Swing)
- Single-ended AMI: DC offset 정보 필요
- ▶ Rising/falling impulse response와 함께 DC offset 값 추출 및 AMI 출력에 적용 기능 필요

AMI Simulation: Single-ended (DDR5): Forward clocking

- SerDes AMI: CDR을 이용하여 내부에서 clocking 신호 생성 (출력 파라미터: clock_times)
- Single-ended AMI: External clock 신호(DQS)를 이용하여 signal clocking (DQ)

BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD NUMBER:	204
ISSUE TITLE:	DQ_DQS GetWave Flow for Clock Forwarding Modeling
REQUESTOR:	Walter Katz, The MathWorks
	Fangyi Rao, Keysight
	Wendem Beyene, Intel
	Ambrish Varma, Cadence
DATE SUBMITTED:	April 22, 2020
DATE REVISED:	
DATE ACCEPTED:	June 26, 2020

AMI Simulation: DDR simulation (Transient)

- IBIS model + Dram pkg + SoC pkg 구성
- Write mode, 4266Mbps (Byte0/1 + CA)
- Basic SI + Eye-diagram report

Channel configuration

0.4

0.2

0.1

0

-0.1

-0.2

-0.4

Transient Simulation Build project:

Build project

> Build -> IBIS analysis -> + channel -> Drag IBIS, Snp files -> Save & Import

ACVS Advanced Channel Verification System) v2.1.7 ACVS Sparameters Channel C-PHY		– 🗆 X				
Channel model S-parameters Analysis IBIS Model Model Import Configuration Verification Module IBIS	Specification Simulation				Dram_IBIS	
New project		Project Manager			Dram PKG	
Import Model (Full Model)	Model Library Path	V Bound			Soc IBIS	
	X Project Build	Reset	Save & Import			
	IBIS analysis AMI analysis		✓ IBIS off		SUC_FKG	
	Dram IBIS Channel	✓ ─ SoC IBIS		Trans	sient Analysis raw	data
I and profile						
	+	+ X Proiect Build				— П »
			_	_	_	
						Reset Save & Import
		IBIS analysis	AMI analysis			✓ IBIS off
		Dram IBIS	Chann	nnel V —	Channel V	SoC IBIS
		IBIS_model.ibs	Dra	tram_ChB_10G_sp.s109p	SoC_CH1_Byte0.s26p	BIS_model.ibs
					SoC_CH1_CA.s22p SoC_CH0_Byte0.s26p	
					SoC_CH0_Byte1.s26p	
			+	+	+	

SerDes/DDR Memory Tips & Solutions	🗶 Snp Editor: Channel — 🗌 🗙
Transient Simulation : Channel configuration ● Channel configuration by rule ● DEE Snp file의 net 연결 및 termination 처리 X X <	Dram_ChA_106_sp.s109p ✓ Port Termination Header Editor Help I# HZ S MA R 50 Image: State Sta
Net Information Channel CH0 Group Net Type Left Net Net Right Net Edit Grouping rule(gdef) Edit BGA rule(,bdef)	Freq.Info Reset Save & Apply X Channel Grouping Rule Input Rule file(.*def)
Biole Multiport Selection Fulle(.mdef) Detected BGA Pattern: Validation Check : Error Hurwin	C:\ACVS_Test_LPDDR4\3_CH_Channel\GroupingRule.gdef Browser Save Help Matched port Template Import Export
<rule 설정="" 순서=""> BGA rule : net의 입출력 관련 키워드 설정 (ex. BGA, DIE) Grouping rule : net의 분류화 -> Channel, Byte, CA 로 분류 Net selection rule : 비 분석 대상 net의 설정 (생략가능) </rule>	1 Syntax : RuleType(1:Channel, 2:Signal, 0:Ignore) Keyword GroupDefine GroupDefineDetail("Group_NetType", Ne ^ 2 GroupingRuleName : "" 3 1 A CH0 4 1 B CH1 5 6 2 DMI0 Byte0 Byte0_DQ 8 2 DQ1 Byte0 Byte0_DQ 8 2 DQ2 Byte0 Byte0_DQ 9 2 DQ2 Byte0 Byte0_DQ 10 2 DQ3 Byte0 Byte0_DQ 11 2 DQ4 Byte0 Dyte0_DQ 12 2 DQ5 Byte0 Byte0_DQ 12 2 DQ5 Byte0 Byte0_DQ 13 2 DQ6 Byte0 Dyte0_DQ 14 2 DQ7 Byte0 Byte0_DQ 15 2 RDQS0_T Differential Byte0_DQS 16 2 RDQS0_C Differential Byte0_DQS 17
4. Multiport rule : 다수의 DIE 조건에서 선택 DIE 설정 (생략가능)	18 2 DMI1 Byte1 Byte1_DMI 19 2 DQ8 Byte1 Byte1_DQ 20 2 DQ9 Byte1 Byte1_DQ 21 2 DO10 Byte1 Byte1 DO <

Transient Simulation : Channel configuration

채널 구성 확인

(ACVS (Advar ACVS s	nced Channel Verificat	ion System) v2.1.7			
(ACVS (Advar へCVS S	ced Channel Verificat	ion System) v2.1.7			
ACVS s	-parameters Channe				$- \sqcup \times$
-		C-PHY			
hannel model	S-parameters A	nalysis IBIS Me	IS 🗾	Simulation	Progress status Header editor
Aodel Import	Configuration Verific	tion Module	IBIS Simulation Setup		
		Tx Dram	Channel	$\rightarrow \qquad \qquad$	>
let Information		Tx Dram	Channel	Channel Me V Soc V	>
let Information Channel	СНО	Tx Dram		Channel Me V SoC V Group Management All Groups by rule	Edit Net selection rule(.ndef)
let Information Channel Group N	CH0 et Type Left Net	Tx Dram	Channel	Channel Me V SoC V Group Management All Groups by nule CH0_Byee0 CH0_Byee0	Edit Net selection rule(.ndef)
let Information Channel Group N Byte0	CH0 et Type Left Net DMI	Tx Dram Net DMID,A	Channel	Channel Me V Soc V Group Management All Groups by nule CH0_Systel CH0_Systel CH0_Systel CH0_Systel	Edit Net selection rule(.ndef) Edit Grouping rule(.gdef)
let Information Channel Group N Byte0 Byte0	et Type Left Net DMI DQ	Tx Dram Net DM0,A DQQ,A	Channel	Channel Me	Edit Net selection rule(.ndef) Edit Grouping rule(.gdef) Edit BGA rule(.bdef)
let Information Channel Group N Byte0 Byte0 Byte0	et Type Left Net DMI DQ DQ	Tx Dram	Channel	Channel Me V SoC V Group Management All Groups by rule CH0_Byte1 CH0_CA CH0_Differential	Edit Net selection rule(.ndef) Edit Grouping rule(.gdef) Edit BGA rule(.bdef)
Het Information Channel Byte0 Byte0 Byte0 Byte0	et Type Left Net DMI DQ DQ DQ DQ	Tx Dram Net DM0_A DQ2_A DQ2_A	Channel	Channel Me V SoC V Group Management All Groups by rule CH0_Byte0 CH0_CA CH0_Differential	Edit Net selection rule(.ndef) Edit Grouping rule(.gdef) Edit BGA rule(.bdef) Edit Multiport selection rule(.mdef)
Net Information Channel Group N Byte0 Byte0 Byte0 Byte0	et Type Left Net DMI DQ DQ DQ DQ DQ DQ DQ	Tx Dram	Channel DIE ØGA BGA Image: Comparison of the	Channel Me	Edit Net selection rule(.ndef) Edit Grouping rule(.gdef) Edit BGA rule(.bdef) Edit Multiport selection rule(.mdef)

Net Co	onnection	n Editor	- 🗆 ×
Channe	СНО	· · ·	Help
Group	Net Type	Channel	Channel
Byte0	DMI	DMI0_A	CH0_DMI_0
Byte0	DQ	DQ0_A	CH0_DQ_0
Byte0	DQ	DQ1_A	CH0_DQ_1
Byte0	DQ	DQ2_A	CH0_DQ_2
Byte0	DQ	DQ3_A	CH0_DQ_3
Byte0	DQ	DQ4_A	CH0_DQ_4
Byte0	DQ	DQ5_A	CH0_DQ_5
Byte0	DQ	DQ6_A	CH0_DQ_6
Byte0	DQ	DQ7_A	CH0_DQ_7
yte0_D	DQS	RDQS0_T_A	CH0_RDQS_T_0
yte0_D	DQS	RDQS0_C_A	CH0_RDQS_C_0
Byte1	DMI	DMI1_A	CH0_DMI_1
Byte1	DQ	DQ8_A	CH0_DQ_8
Byte1	DQ	DQ9_A	CH0_DQ_9
Byte1	DQ	DQ10_A	CH0_DQ_10
Byte1	DQ	DQ11_A	CH0_DQ_11
Byte1	DQ	DQ12_A	CH0_DQ_12
Bytel	DQ	DQ13_A	CH0_DQ_13
Byte1	DQ	DQ14_A	CH0_DQ_14
Byte1	DQ	DQ15_A	CH0_DQ_15
yte1_D	DQS	RDQS1_T_A	CH0_RDQS_T_1
yte1_D	DQS	RDQS1_C_A	CH0_RDQS_C_1
CA	ADDR	CA0_A	CH0_CA_0
CA	ADDR	CA1_A	CH0_CA_1
CA	ADDR	CA2_A	CH0_CA_2
CA	ADDR	CA3_A	CH0_CA_3
CA	ADDR	CA4_A	CH0_CA_4
CA	ADDR	CA5_A	CH0_CA_5
CA	CS	CS0_A	CH0_CS_0
CA	CS	CS1_A	CH0_CS_1
CA_Diff	CLK	CK_T_A	CH0_CK_T
CA_Diff	CLK	CK_C_A	CH0_CK_C
CA CA CA_Diff CA_Diff	CS CS CLK CLK	CS0_A CS1_A CK_T_A CK_C_A	CH0_CS_0 CH0_CS_1 CH0_CK_T CH0_CK_C

Cancel Apply

Transient Simulation : 설정

- Simulation 설정
- **>** Basic SI, IBIS simulation

XX ACVS (Adv	vanced Channel V	erification Systen	ı) v2.1.7				- 🗆 ×
ΛCVS	S-parameters	Channel	-РНҮ				
+		9	Dos	5			Progress status Header editor
Channel model	S-parameters	Analysis	IBIS Model	Specification	Simulation		()
Model Import	Configuration	Verification Module		IBIS Simulation Setup			
Verification Iten	ns Select				Verification Set	tup	
Chann	el Loss / TDR / TDT	~	IBIS analysis	~	Edit V	/erification rule(.vdef)	Apply rule
	AMI analysis	~				· · · ·] [
					Verification Set	tup View	
							<u> </u>
							v

Transient Simulation:

- IBIS 설정
- ▶ Dram: RxODT_60 선택, SoC: TxModel48 선택
- ➢ Write mode 선택, Hawk-eye Fast 선택
- > 'Add' click

Ж АС	VS (Advance	ed Channel V	/erificatio	n System) v	2.1.7											×
٨C	/S S-p	arameters	Channel	C-PH	()											
+ Channel r	nodel S	-parameters	Ana	lysis	IBIS Model	Specification	Simulation						Progress si	tatus	Header e	ditor
Model Im	nport C	onfiguration	Verificatio	on Module	IBIS	Simulation Setup										
	lucia		_													
Mode se	etup		e				PRBS setup									
Mode		Write	\sim				Analysis engine		Hawk-	eye	~	Option		Fast		\sim
						[Auto	C - L +	- A		
									\sim		×	Auto	Selection	Aut	o delay re	emova
Dram		IBIS Pkg					$\textcircled{\bullet}$	IBIS	\bigcirc	Load	An	alysis	Case			
Net Type	IBIS File	Component	Signal Na	me Select	or	Model	l	[]	I/O	Corner	-	¥	Net Group		Mode	
QS	IBIS_model.i	IBIS_model	CA0	- D_IO	RxODT_60@[G	C:59.68, PC:Inf]		•	Input	typ 🔹						
DQ	IBIS_model.i	IBIS_model	CA0	• D_IO	RxODT_60@[G	C:59.68, PC:Inf]		•	Input	typ •		1 CH	0		Write	
DMI	IBIS_model.i	IBIS_model	CA0	• D_IO	RxODT_60@[G	C:59.68, PC:Inf]		•	Input	typ •			4			
CLK	IBIS model.i	IBIS model	CA0	• D IO	RxODT 60@[G	C:59.68, PC:Inf]		-	Input	typ •						
DDR	IBIS_model.i	IBIS_model	CA0	• D_10	RxODT_60@[G	C:59.68, PC:Inf]			Input	typ •						
CKE	IBIS_model.i	IBIS_model	CA0	• D_IO	RxODT_60@[G	C:59.68, PC:Inf]		-	Input	typ •						
S	IBIS_model.i	IBIS_model	CA0	- D_IO	RxODT_60@[G	C:59.68, PC:Inf]		•	Input	typ •						
SoC		V IBIS Pkg	V Net	delay 👔			۲	IBIS	\circ	V Pulse			1			
Net Type	IBIS File	Component	Signal Na	me Select	or	Mode		[]	1/0	Corner			1			
05	IBIS model i	IBIS model	CAO	• D 10	TxModel48@[P	U 7:47.91. PD 7:4	7.74. RT:6F-11ns. FT:6 9	E	1/0	typ •						
00	IBIS model.i	IBIS model	CAO	• D 10	TxModel48@[P	U Z:47.91. PD Z:4	7.74. RT:6E-11ns. FT:6.9	E	1/0	typ •						
DMI	IBIS_model.i	IBIS_model	CA0	• D_10	TxModel48@[P	U_Z:47.91, PD_Z:4	7.74, RT:6E-11ns, FT:6.9	E	1/0	typ •		/				
	IDIC moduli	IDIC modul	640	- 0.10	Tutte delago (2		7.74 DT.CE 11-2 ET.C.C	-								
	IBIS_model.i	IBIS_model	CAO	• D_IO	TxModel48@[P	U_Z:47.91, PD_Z:4	7.74, RT:6E-11ns, FT:6.9	E	1/0	тур •						
	IBIS_model.i	IBIS_model	CAU	• D_IO	TxModel48@[P	U_Z:47.91, PD_Z:4	7.74, R1:6E-11ns, FT:6.9	E	1/0	тур •		- 1				
UNE CE	IBIS_model.I	IBIS_model	CAU	· D_IO	TxModel48@[P	U_Z:47.91, PU_Z:4	7.74 PT:6E 11ms, FT:6.9	E	1/0	typ •						
-2	IBIS_model.I	IBI2_model	CAU	• D_IO	IXModel48@[P	0_2:47.91, PD_2:4	1.14, R1:6E-11ns, FT:6.9	E	1/0	тур •						
status		Process	Complete									Add	De	elete	Mod	lify

PRBS setup		
Analysis engine	Hawk-eye	\sim
	Hawk-eye	
	PRBS	
IBI:	Manual	

PRBS setup

1) Hawk-eye : Pseudo-worst bit pattern (Fast/Optimal/Strict)

2)PRBS

: Linear feedback shift register

3) Manual

: User bit pattern

<u> Transient Simulation : 분석 선택</u>

Data rate, Mask, 기타 설정

<u>Transient Simulation : 분석 실행</u>

▶ 현재 설정 저장: Save profile click

Run

XX ACVS (Ac	vanced Channel	Verification Syste	rm) v2.1.7				- D ×			
ΛCVS	S-parameters	Channel	С-РНҮ							
+ Channel model	S-parameters	Analysis	IBIS Model	Specification	Simulation		Progress status Header editor]	XX Progress Status	- 🗆 ×
Model Import	Configuration	Verification Module		IBIS Simulation Setu					Progress : Channel Loss / TDR / TDT	
										6%
									Progress : IBIS analysis	
										0%
									log	
									LOG	
		Dra	m	Channel	Channe	Soc			[2022-05-10 17:15:29] Start Channel Ver [2022-05-10 17:15:29] Import path : C.V. [2022-05-10 17:15:39] Start CombineSP [2022-05-10 17:15:40] CombinedS Fresu 3_C4L, Channel_CH0_combinedS r2p [2022-05-10 17:15:40] End CombineSP [2022-05-10 17:15:40] Start CombineSP	ffication CVS_Test_LPDDR4 (Component: Channel, Channel : CH0) lit : C:\ACVS\JYCho\Channel_analysis Component : Channel, Channel : CH0) (Component : Channel, Channel : CH0) =
							Save profile]	Sir	mulation 진행
			р	rofile 저	장 및 Ru	n				
			•						1_DD_Dram_Driver	
									2_DP_Dram_PKG	Channel_Verification_Result_v2.1.7.
									3_SP_AP_PKG	IBIS_Simulation_Result_v2.1.7.xlsx
									4_SD_SoC_Driver	IBIS_Simulation_Result_v2.1.7_Full.>
									ACVS_Results_20220510135	2
									profiles	
									Re	port 자동 생성

Transient Simulation: PCIe Gen5 (Differential AMI)

- AMI model + PCB 구성
- Basic SI + Eye-diagram report

Eye-diagram results

Transient Simulation: PCle Gen5 (Differential AMI)

- Build project
- Build -> AMI analysis -> + channel -> Drag IBIS, Snp files -> Save & Import

Transient Simulation: PCle Gen5 (Differential AMI)

- AMI 설정
- ▶ IBIS 모델 선택 및 AMI 설정 후 'Add' click

Transient Simulation: PCle Gen5 (Differential AMI)

- Run
- ▷ 현재 설정 저장: Save profile click

Transient Simulation : DDR5 simulation (Single-ended AMI)

- IBIS model + Dram pkg + SoC pkg 구성
- Write mode, 4800 Mbps (Byte0/1)
- Basic SI + Eye-diagram report

Channel configuration

Eye-diagram results

Transient Simulation : DDR5 simulation (Single-ended AMI)

- IBIS 설정
- ▶ AMI mode 설정: Signle-ended AMI 분석 진행
- ▶ 저장된 설정 값: Write mode, PRBS 2^16

🗶 ACVS (Adva																				
ΛCVS	S-parameters	Channel C-P	нү																	
Channel model	S-parameters	Analysis	IBIS Model	Specification	Simulation				Progre	ess status	Header edi	or	XX AMI Infor	mation of IB	IS Model				- 0	×
Model Import	Configuration	Verification Module		IBIS Simulation Setup						1			[Dram][DQ]	Case : 1(Write	mode)					
IBIS analysis	✓ AMI mod	le											IBIS Model AMI file (.ar	mi)	DQ.	ODT_60@(GC:	59.68, PC:Inf]			
Mode setup					PRBS setup								AMI file (.dl	11)	Huv	vin_AMI_rx_64.	dll			
Mode	Write	\checkmark			Analysis engine	PRBS		~	Option	2^16	~	·	Item N	lame	Usage Typ	e Format	Default	Value	Description	
Dram	IBIS Pkg	Signal Name Sele	ctor	Model	۲) IBIS	Load		Auto Selectio	n 🗸 A	uto delay rem	oval	Init_Returns_In GetWave_Exists Use_Init_Outpu Ignore_Bits Max_Init_Aggre RX_CORNER	mpulse in s in ut(N/A) in issors in in	fo Boolean fo Boolean fo Boolean fo Integer fo Integer String	Corner	False True False 20000 2147483646 "Typical"	False True False 20000 2147483646 "Typical"	"AML_init() function does not return an i "AML_GetWave() function exists" "The output of the AML_init() function is "The number of bits ignored to allow tim "The maximum number of allowed cross" "AMI model simulation comer"	inot ne for stalk
DQS IBIS_mod	el IBIS_model	CA0 · D_IO	DQS_ODT_	60@[GC:59.68, PC:Inf]		• Input	typ	0	# Net Gr	oup	Write	-								
DQ IBIS_mod DMI IBIS_mod	el IBIS_model el IBIS_model	CA0 · D_IO CA0 · D_IO	DQ_ODT_6	0@[GC:59.68, PC:Inf] 0@[GC:59.68, PC:Inf]		Input Input	typ • typ •	0			Witte	٦	SynC wit	h IBIS-Corner	typ			Resto	e Default Cancel Apr	ply
SoC	IBIS Pkg	Vet delay 👔			۲) ibis	V Pulse									AM	실정	값 확인		
Net Type IBIS Fi	le Component	Signal Name Sele	ctor	Model		[]] I/O	Corner													
DQS IBIS_mod	el IBIS_model	CA0 - D_IO	DQS48_100	@[PU_Z:47.91, PD_Z:47.	74, RT:6E-11ns, FT:6 4 RT:6E-11ns FT:6	····· · I/O	typ •	0												
DMI IBIS_mod	el IBIS_model	CA0 • D_IO	DQ48_10@	PU_Z:47.91, PD_Z:47.7	4, RT:6E-11ns, FT:6.9) • I/O	typ •	ŏ												
Status	Process	Complete							Add	Delete	Modify	,								
								L												

Transient Simulation : DDR5 simulation (Single-ended AMI)

- Data rate, Mask, 기타 설정
- 저장된 설정 값: DDR5 4800 Mbps

XX ACVS (Adv	vanced Channel \	/erification System)) v2.1.7				— C	
ΛCVS	S-parameters	Channel C-F	РНҮ					
Channel model	S-parameters	Analysis	IBIS Model	Specification	Simulation		Progress status Head	er editor
Model Import	Configuration	Verification Module		IBIS Simulation Setup				
Select Data Rate	e Analysis List s	Edit Rule DDR5 4800 Mbps	App Add Add Add Add Add Add Add	ly Rule dd to List elete ete All	Specification Name : DDR5 4 Standard : LPD DataRate : 480 CA_Operation CA_DataRate_ Half_UI_Shifti Forward_clocl Forward_clocl Forward_clocl Forward_clocl Forward_clocl Byte_MaskWic Byte_MaskWic Byte_MaskWic CA_MaskWidth CA_MaskWidth	4800 Mbps DDR4 J0 :SDR Divider: 2 ng_Read: DQS ng_Write: DQS king_Byte_On: 1 king_Byte_Read: DQS king_Dty_Write: DQS king_CA_Write: CLK ight: 0.07 th_Setup: 0.17 dth_Setup: 0.17 dth_Hold: 0.07 ht: 0.13 h_Setup: 0.1 h_Hold: 0.1		

Transient Simulation : DDR5 simulation (Single-ended AMI)

Run

SnpView.com

Huwin Web-Based Free SnP view/heal/share, TDR, Eye Diagram, 2x THRU de-embedding

Plan to add IBIS, IBIS-AMI simulation

Thank You

